Complementary hydrogen-bonding between thymidine-based low molecular-weight gelator and polynucleotide in organic media†

Kazunori Sugiyasu,*a* **Munenori Numata,***a* **Norifumi Fujita,***a* **Sun Min Park,***b* **Young Ji Yun,***b* **Byeang Hyean Kim***b* **and Seiji Shinkai****a*

a Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan. E-mail: seijitcm@mbox.nc.kyushu-u.ac.jp

b National Research Laboratory, Department of Chemistry, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea. E-mail: bhkim@postech.ac.kr

Received (in Cambridge, UK) 21st May 2004, Accepted 22nd June 2004 First published as an Advance Article on the web 28th July 2004

We have found that aggregation mode and gelation property of thymidine-based organogelator 1 are affected by the addition of its complementary polynucleotide in organic media.

Motivated by many potential applications of gels based on supramolecular chemistry, development of new low molecularweight gelators for organic solvents and investigation of their attractive self-assembling properties have recently received much attention.1 Prebiotic molecules such as amino acid derivatives,2 carbohydrates,³ lipids⁴ and steroids⁵ are known to be useful as the scaffolds to design low molecular-weight gelators because they are applicable to cosmetics, foods, medicines, sensors and so forth with biodegradable and biocompatible properties.⁶

Despite the recent achievements elucidating the molecular prerequisites for gelation ability using prebiotic molecules,3,7 the control of these aggregation structures and properties is still a challenging goal. So far, however, only a few attempts have been made to achieve this purpose by the combination of low molecularweight gelators with a function related to molecular recognition.⁸ Without doubt, the most attractive molecular recognition event in biomolecules is that observed for nucleobases. Herein we report on a drastic change in aggregation morphology and gelation properties of nucleoside-based gelator, $9-11$ induced by the complementary hydrogen-bonding with RNA.

Kim *et al.* have already reported a family of thymidine-based organogelators and found that some of them show good gelation abilities toward nonpolar solvents.¹⁰ For example, $5'$ -esterificated thymidine derivative (**1**) aggregates through the hydrogen bonding interaction, van der Waals interaction and $\pi-\pi$ stacking, and forms organogels with benzene, toluene, CCl4, tetrahydronaphthalene (THN), hexane and cyclohexane. We first tried to add complementary polymer [in this case: poly(A)] into **1** gel phase, however, it was virtually insoluble in such nonpolar solvents. To dissolve poly (A) into organic media, we prepared poly $(A)/$ lipid by an ion-pair exchange with a cationic surfactant: didodecyldimethylammonium bromide (DDAB).¹² Poly(C)/lipid was prepared as a non-complementary polynucleotide.

Interestingly, when an equal amount of poly(A)/lipid was dispersed within **1**/benzene gel and the mixture was heated to

† Electronic supplementary information (ESI) available: IR spectral changes in **1** gel induced by poly(A)/lipid addition; TEM images of **1** gel and **1** with poly(A)/lipid (1.0 eq.) gel, and SEM image of **1** with poly(A)/ lipid gel (0.5 eq.). See http://www.rsc.org/suppdata/cc/b4/b407756n/

obtain the sol phase, the opaque gel of **1** was turned into the transparent gel by cooling (Fig. 2a). In contrast, the original opaque gel was obtained from **1** with poly(C)/lipid. It is possible that macroscopic aggregation structure is changed by the addition of poly(A)/lipid forming the complementary hydrogen-bonding.

The hydrogen-bonding interaction is one of the major driving forces for gelation of **1**. We thus measured ATR-FTIR spectra to confirm the change in hydrogen-bonding mode by the addition of polynucleotide (Fig. 1). A characteristic peak of 1 gel at 3431 cm⁻¹, which is attributed to hydrogen bonding $3'-OH$,¹⁰ disappeared by the addition of poly(A)/lipid. The contribution of A–T base pairing can be easily discussed by the $C=O$ stretching band appearing around $1650-1700$ cm⁻¹. Poly(A)/lipid did not show such a peak around this wavenumber region. In **1** gel, a strong peak at 1659 cm^{-1} was decreased whereas that at 1694 cm⁻¹ was increased by adding $poly(A)/lipid$, indicating that non-complementary T-T

DOI: 10.1039/b407756n

bol:

10.1039/b407756r

Fig. 2 (a) Photograph of **1** gel (left) and **1** with poly(A)/lipid gel (right); SEM images of (b) **1** gel, (c) **1** with poly(A)/lipid gel and (d) **1** with poly(C)/lipid gel, prepared from benzene, bar length = $5 \mu m$, [A or C]/[T] = 1.0.

hydrogen-bonding pairs or 3'-OH–T hydrogen-bonding are reassembled to complementary A–T hydrogen-bonding pairs.13 On the other hand, IR spectrum of **1** with poly(C)/lipid gel was much the same as that of 1 gel, indicating that $poly(C)/lipid$ does not interact with **1**. Since the IR spectral change by the addition of poly(A)/lipid was saturated at around 1.0 equivalent, the stoichiometry between A and T should be 1.0 as in the case of Watson– Crick base pairing (ESI: Fig. S1).†

To examine the aggregation structure of **1** in the gel phase, we took electron micrograph (SEM and TEM) images. In **1**/benzene gel, the plate-like crystalline structure was observed as already reported for related thymidine-based organogelators (Fig. 2b).10 As expected from foregoing gel turbidity and IR spectral similarity, the plate-like structure was also observed for poly(C)/lipid gel (Fig. 2d).14 Interestingly, this plate-like structure was torn into shreds by the addition of $poly(A)/lipid$ and the 3-D entangled fiber structure was observed (Fig. 2c). The morphological changes of **1** gel were also saturated at around 1.0 equivalent of poly(A)/lipid (Fig. S2).

The crystallinity of the aggregate in the gel phase is an important point affecting the bulk gelation property. One can notice from the SEM image of **1** with poly(A)/lipid gel that the surface is rough and the fiber structure entangled windingly; that is, crystallinity is low. We also confirmed that X-ray diffraction (XRD) peak intensities of **1** gel are decreased by adding poly(A)/lipid (Fig. 3). This result indicates that poly(A)/lipid prevents the bilayer assembly structure of **1** (inset figure in Fig. 3) from growing up to multi-layers.

To evaluate the bulk gelation property, we measured the gel-tosol phase transition temperature (T_{gel} , [1] = 2.0 wt/vol%, [A or C]/ $[T] = 1.0$, benzene). The vial containing the gel was immersed inversely in a thermo-controlled oil bath, and the temperature was increased in the rate of $1 \degree C \text{ min}^{-1}$. When the gel collapsed, we defined the temperature as T_{gel} . **1** gel and **1** with poly(C)/lipid gel were heavily turbid and gradually spilled the solvent out between 40 to 70 °C. These phenomena are often seen for the crystalline gel. In contrast, **1** with poly(A)/lipid gel was beautifully transparent and a sharp gel-to-sol phase transition temperature appeared at 60 °C. This result indicates that bulk property and stability of the present gel system are controlled by the complementary hydrogen-bonding. In fact, we noticed that **1** gel is stabilized against mechanical shaking by the addition of $poly(A)/lipid$.

In conclusion, we have demonstrated that a thymidine-based organogelator (**1**) interacts with complementary poly(A)/lipid in

Fig. 3 X-ray powder diffraction diagrams of **1** gel (solid line) and **1** with poly(A)/lipid gel (dotted line): $[1] = 2.0$ wt/vol%, $[A]/[T] = 1.0$. Inset figure shows a possible molecular arrangement of **1**.

the gel phase and the drastic changes in aggregation morphology and gelation properties are induced. Although only a few attempts to combine nucleobase-appended gelators with its complementary DNA or RNA have been reported,¹⁵ these systems were limited to aqueous media because of the solubility problem in DNA and RNA. In this report, we found that poly(A)/lipid acts as a modifier for gelation properties in organic media where the hydrogen-bonding interaction can exert the very strong attractive force. We believe that the present organogel system should be more general to combine low molecular-weight gelators with polymeric compounds utilizing a concept of molecular recognition.

The support for this study was partially provided by the 21st Century COE Project, Functional Innovation of Molecular Informatics and a Grant-in-Aid for Scientific Research (S) (No. 15105004) from the Ministry of Education, Culture, Sports, Science and Technology (Japan). B.H.K. is grateful to KISTEP (NRL Program) and BK21 for financial support.

Notes and references

- 1 P. Terech and R. G. Weiss, *Chem. Rev.*, 1997, **97**, 3133; J. H. van Esch and B. L. Feringa, *Angew. Chem., Int. Ed.*, 2000, **39**, 2263.
- 2 L. A. Estroff and A. D. Hamilton, *Angew. Chem., Int. Ed.*, 2000, **39**, 3447; K. Hanabusa, A. Itoh, M. Kimura and H. Shirai, *Chem. Lett.*, 1999, 767; F. M. Menger and K. L. Caran, *J. Am. Chem. Soc.*, 2000, **122**, 11679.
- 3 O. Gronwald and S. Shinkai, *Chem. Eur. J.*, 2001, **7**, 4328; A. Friggeri, O. Gronwald, K. J. C. van Bommel, S. Shinkai and D. N. Reinhoudt, *J. Am. Chem. Soc.*, 2002, **124**, 10754.
- 4 S. Kiyonaka, S. Shinkai and I. Hamachi, *Chem. Eur. J.*, 2003, **9**, 976; T. Nakashima and N. Kimizuka, *Adv. Mater.*, 2002, **14**, 1113; H. Ihara, T. Sakurai, T. Yamada, T. Hashimoto, M. Takafuji, T. Sagawa and H. Hachisako, *Langmuir*, 2002, **18**, 7120.
- 5 Y.-c. Lin, B. Kachar and R. G. Weiss, *J. Am. Chem. Soc.*, 1989, **111**, 5542; K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda and S. Shinkai, *J. Am. Chem. Soc.*, 1994, **116**, 6664.
- 6 S. Kiyonaka, K. Sada, I. Yoshimura, S. Shinkai, N. Kato and I. Hamachi, *Nature Mater.*, 2004, **3**, 58.
- 7 R. Luboradzki, O. Gronwald, M. Ikeda, S. Shinkai and D. N. Reihoudt, *Chem. Lett.*, 2000, 1148.
- 8 K. Inoue, Y. Ono, Y. Kanekiyo, T. Ishi-i, K. Yoshihara and S. Shinkai, *J. Org, Chem.*, 1999, **64**, 2933; S.-i. Kawano, N. Fujita and S. Shinkai, *Chem. Commun.*, 2003, 1352.
- 9 E. Snip, S. Shinkai and D. N. Reinhoudt, *Tetrahedron Lett.*, 2001, **42**, 2153; E. Snip, K. Koumoto and S. Shinkai, *Tetrahedron*, 2002, **58**, 8863.
- 10 Y. J. Yun, S. M. Park and B. H. Kim, *Chem. Commun.*, 2003, 254; S. M. Park, Y. S. Lee and B. H. Kim, *Chem. Commun.*, 2003, 2912.
- 11 R. Iwaura, K. Yoshida, M. Masuda, K. Yase and T. Shimizu, *Chem. Mater.*, 2002, **14**, 3047.
- 12 K. Tanaka and Y. Okahata, *J. Am. Chem. Soc.*, 1996, **118**, 10679.
- 13 Y. Kyogoku, R. C. Lord and A. Rich, *J. Am. Chem. Soc.*, 1967, **89**, 496; S. J. Kim, J. Y. Lee, K. H. Ko and B. H. Kim, *Bull. Kor. Chem. Soc.*, 1998, **19**, 816.
- 14 We observed only small amount of entangled fiber structure in **1** with poly(C)/lipid gel, however, almost all of the sample were plate-like structure as shown in Fig. 2d.
- 15 M. Numata and S. Shinkai, *Chem. Lett.*, 2003, **32**, 308; R. Iwaura, K. Yoshida, M. Matsuda, M. Ohnishi-Kameyama, M. Yoshida and T. Shimizu, *Angew. Chem., Int. Ed.*, 2003, **42**, 1009.